Узнать цену работы
Статьи по теме

Уравнения электромагнитной волны

ОПРЕДЕЛЕНИЕ

Электромагнитные волны представляют собой переменное электромагнитное поле, распространяющееся в пространстве.

Электромагнитные волны являются поперечными: векторы и сильных электрических и магнитных полей волны взаимно перпендикулярны и лежат в плоскости и лежат в плоскости, перпендикулярной вектору волны скорость распространения. Векторы и образуют правую систему.

Электромагнитные волновые уравнения

Связь между векторами и в электромагнитной волне, распространяющейся в непроводящей среде, определяется уравнениями Максвелла, в которых (плотность заряда) и (вектор плотности тока) считаются равными нулю:

где - напряженность электрического поля, - вектор магнитной индукции, - вектор магнитной интенсивности, - вектор электрического смещения.

Таким образом, система уравнений (1) является уравнениями электромагнитной волны в непроводящей среде.

В случае однородной, изотропной, непроводящей среды, не обладающей ферромагнитными или сегнетоэлектрическими свойствами, уравнение электромагнитной волны будет иметь вид:

где - электрические и магнитные постоянные, - относительная электрическая и магнитная проницаемость среды.

Векторы и поля электромагнитной волны могут быть выражены через скалярные и векторные потенциалы. Тогда уравнения электромагнитной волны будут выглядеть так:

где - оператор Лапласа,

Каждая из проекций векторов на ось прямоугольной декартовой системы координат и удовлетворяет волновому уравнению (4):

где - фазовая скорость электромагнитной волны, .В вакууме . Для всех сред, кроме ферромагнитных, и

Определение и уравнение плоской электромагнитной волны

ОПРЕДЕЛЕНИЕ

Электромагнитная волна называется плоскостью, если векторы и зависят только от времени и одной декартовой координаты.

Для плоской электромагнитной волны, распространяющейся вдоль положительного направления оси Ox правой системы координат, уравнения электромагнитной волны записываются следующим образом:

где - единичный вектор, проведенный в направлении распространения волны. Мы видим, что плоскую электромагнитную волну можно полностью определить, используя только векторный потенциал . В вакууме:

Определение и уравнение монохроматической электромагнитной волны

ОПРЕДЕЛЕНИЕ

Электромагнитная волна называется монохроматической, если компоненты вектора электромагнитного поля и

создают гармонические колебания одной и той же частоты, называемые частотой волн. Произвольная немонохроматическая волна может быть представлена как набор монохроматических волн.

Силы электрического и магнитного полей плоской монохроматической волны часто представлены в виде:

где - волновое число.

Очевидно, что комплексные функции эквивалентны (8)

Здесь k - волновой вектор, а его модуль равен значению

Электрическое и магнитное поля плоской волны перпендикулярны друг другу.

Примеры решения проблем

ПРИМЕР 1

  • Задача

    Найти средний вектор Пойнтинга для плоской электромагнитной волны , если волна распространяется в вакууме.

    Решение По определению вектор Пойнтинга:

    Запишем средний вектор Пойнтинга, так как

    Для плоской электромагнитной волны положим:

    Запишем уравнение полосой электромагнитной волны:

    Дифференцируем (1.3) на x:

    Дифференцируя (1.4) с t, получаем:

    Подставим (1.7) и (1.8) в (1.5), получим:

    Подставим (1.10) в (1.1), то в (1.2) получим:

    Поскольку волна распространяется в вакууме, мы пишем:

    Средний вектор вектора Посвящения для плоской электромагнитной волны:

    ПРИМЕР 2

    Плоская электромагнитная волна из первой среды падает на границу под определенным углом , частично проникает во вторую среду и отражается от границы раздела между двумя средами. Граф .

    1) Определите, как изменяется частота электромагнитной волны во время отражения и преломления.

    2) Докажите, что лучи, падающие, отраженные и преломленные, лежат в одной плоскости.

    3) Найти законы отражения и преломления электромагнитной волны.

    4) Определить формулу для связи амплитудных значений векторов поля (для отражения и преломления электромагнитных волн (для нормального падения).

    Рис.1

  • Решение.

    Используя уравнение для интенсивности электромагнитной волны из системы уравнений (9), запишем векторы интенсивности падающего , отраженного и преломленного волн:

    Необходимо найти связь между амплитудами, частотами колебаний и волновыми векторами падающей , отраженной и преломленной (92) волн. Мы используем непрерывность тангенциальной составляющей поля на границе раздела между двумя средами:

    Проанализируем равенство (2.4) с учетом (2.1), (2.2), (2.3) в следующем порядке:

    1) Исправьте некоторую точку на интерфейсе, выберите одну временную зависимость в равенстве (2.4), написанную в проекции на некоторую ось:

    Это равенство должно выполняться тождественно для всех значений t, что возможно только в том случае, если: (2.6). Мы получаем: частота при отражении и преломлении не изменяется.

    2) Разделив равенство (2.4) на общий коэффициент времени, получим выражение вида:

    Равенство (2.6) должно выполняться для всех точек интерфейса, что возможно только при условии:

    Пусть то и , откуда следует, что векторы лежат в одной плоскости.

    3) Плоскость векторов совпадает с плоскостью Oxz (рис.1). Выберите начало вектора на оси Ox. Из формулы (2.7) следует:

    Используя формулу, связывающую волновой вектор с частотой , получим:

    Отсюда мы получаем законы отражения (2.10) и преломления (2.11):

    является показателем преломления.

    4) Пусть волна падает перпендикулярно поверхности раздела (рис. 2), причем вектор направлен по оси Ox. (Тогда вектор направлен по оси Oy.)

    рис. 2

    Используя уравнения для плоской электромагнитной волны, запишем:

    Эти формулы определяют поле падающей волны. Для отраженной волны, распространяющейся в обратном направлении имеем:

    Преломленная волна запишется в виде:

    Исходя из непрерывности тангенциальной составляющей вектора и тангенциальной составляющей вектора на плоскости z=0 к уравнениям:

    Решая систему находим:

  • Ответ 1) Частота при отражении и преломлении не изменяются.

    2) Доказано, что волновые векторы лежат в одной плоскости, следовательно, лучи падающий отраженный и преломленный лежат в одной плоскости.

    3) Получены законы

    (отражения).

    (преломления)

    4) Формулы (2.12) есть формулы связи амплитудных значений векторов поля при отражении и преломлении электромагнитных волн (при нормальном падении).

  • Узнать цену работы
    Узнай цену
    своей работы
    Нужны оригинальность, уникальность и персональный подход?
    Закажи свою оригинальную работу
    УЗНАТЬ СТОИМОСТЬ